Automated and adaptable quantification of cellular alignment from microscopic images for tissue engineering applications.
نویسندگان
چکیده
Cellular alignment plays a critical role in functional, physical, and biological characteristics of many tissue types, such as muscle, tendon, nerve, and cornea. Current efforts toward regeneration of these tissues include replicating the cellular microenvironment by developing biomaterials that facilitate cellular alignment. To assess the functional effectiveness of the engineered microenvironments, one essential criterion is quantification of cellular alignment. Therefore, there is a need for rapid, accurate, and adaptable methodologies to quantify cellular alignment for tissue engineering applications. To address this need, we developed an automated method, binarization-based extraction of alignment score (BEAS), to determine cell orientation distribution in a wide variety of microscopic images. This method combines a sequenced application of median and band-pass filters, locally adaptive thresholding approaches and image processing techniques. Cellular alignment score is obtained by applying a robust scoring algorithm to the orientation distribution. We validated the BEAS method by comparing the results with the existing approaches reported in literature (i.e., manual, radial fast Fourier transform-radial sum, and gradient based approaches). Validation results indicated that the BEAS method resulted in statistically comparable alignment scores with the manual method (coefficient of determination R(2)=0.92). Therefore, the BEAS method introduced in this study could enable accurate, convenient, and adaptable evaluation of engineered tissue constructs and biomaterials in terms of cellular alignment and organization.
منابع مشابه
An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملAutomatic Sperm Analysis in Microscopic Images of Human Semen: Segmentation Using Minimization of Information Distance
Introduction The morphologic features of human sperms are key indicators for monitoring fertility problems in men. Therefore, automated analyzing methods via microscopic videos have become the most favorite policy in infertility treatment during the last decades. Materials and Methods In the proposed method, firstly a hypothesis testing framework was defined to distinguish sperms from backgroun...
متن کاملA Semi-Automated Algorithm for Segmentation of the Left Atrial Appendage Landing Zone: Application in Left Atrial Appendage Occlusion Procedures
Background: Mechanical occlusion of the Left atrial appendage (LAA) using a purpose-built device has emerged as an effective prophylactic treatment in patients with atrial fibrillation at risk of stroke and a contraindication for anticoagulation. A crucial step in procedural planning is the choice of the device size. This is currently based on the manual analysis of the “Device Landing Zone” fr...
متن کاملDifferentiation of active tumor from edematous regions of glioblastoma multiform tumor in diffusion MR images using heterogeneity analysis method
Background: Due to intrinsic heterogeneity of cellular distribution and density within diffusion weighted images (DWI) of glioblastoma multiform (GBM) tumors, differentiation of active tumor and peri-tumoral edema regions within these tumors is challenging. The aim of this paper was to take advantage of the differences among heterogeneity of active tumor and edematous regions within the gliobla...
متن کاملAutomated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Tissue engineering. Part C, Methods
دوره 17 6 شماره
صفحات -
تاریخ انتشار 2011